Neurofilament proteins in biological fluids is a marker for nerve damage

Puentes F, Topping J, Kuhle J, van der Star BJ, Douiri A, Giovannoni G, Baker D, Amor S, Malaspina A.
Immune reactivity to neurofilament proteins in the clinical staging of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013 . doi: 10.1136/jnnp-2013-305494. [Epub ahead of print]

BACKGROUND:Neurofilament (NF) proteins detection in biological fluids as a by-product of axonal loss is technically challenging and to date relies mostly on cerebrospinal fluid (CSF) measurements. Plasma antibodies against NF proteins and particularly to their soluble light chain (NF-L) could be a more practical surrogate marker for disease staging in amyotrophic lateral sclerosis (ALS), an invariably fatal and clinically heterogeneous neuromuscular disorder.
METHODOLOGY:We have used a recombinant neurofilament light chain (NF-L) protein for the ELISA detection of antibodies against NF proteins in plasma samples from a well-characterised cohort of ALS individuals (n:73). The use of an established functional rating scale and of a recently proposed staging of disease progression allowed stratification of the ALS cohort based on disease stage, site of onset, survival and speed of disease progression.
RESULTS:Antibody levels to NF proteins in plasma were significantly higher in ALS individuals compared to healthy controls (p<0.001). Higher NF plasma immunoreactivity was seen in advanced ALS cases (stage IVA-B) compared to earlier phases of the disease (p<0.05). There was no difference in anti-NF plasma antibodies between ALS individuals treated with riluzole and untreated patients; although riluzole-treated ALS cases with an earlier age of onset and with a shorter diagnostic delay displayed higher anti-NFL antibody levels compared to untreated ALS patients with similar features.
CONCLUSIONS:Immunoreactivity to plasma NF-L and homologous NF proteins is informative of the stage of disease progression in ALS. The determination of NF antibody levels in plasma could be added to the growing panel of disease-monitoring biomarkers in ALS targeting cytoskeletal antigens.
Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, Kappos L, Leppert D, Petzold A, Giovannoni G, Kuhle J. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One. 2013 Sep 20;8(9):e75091. doi: 10.1371/journal.pone.0075091
OBJECTIVE:Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf) are cytoskeletal proteins of neurons and their release into cerebrospinal fluid has shown encouraging results as a biomarker for neurodegeneration. This study aimed to validate the quantification of the Nf light chain (NfL) in blood samples, as a biofluid source easily accessible for longitudinal studies.
METHODS:We developed and applied a highly sensitive electrochemiluminescence (ECL) based immunoassay for quantification of NfL in blood and CSF.
RESULTS:Patients with Alzheimer's disease (AD) (30.8 pg/ml, n=20), Guillain-Barré-syndrome (GBS) (79.4 pg/ml, n=19) or amyotrophic lateral sclerosis (ALS) (95.4 pg/ml, n=46) had higher serum NfL values than a control group of neurological patients without evidence of structural CNS damage (control patients, CP) (4.4 pg/ml, n=68, p<0.0001 for each comparison, p=0.002 for AD patients) and healthy controls (HC) (3.3 pg/ml, n=67, p<0.0001). Similar differences were seen in corresponding CSF samples. CSF and serum levels correlated in AD (r=0.48, p=0.033), GBS (r=0.79, p<0.0001) and ALS (r=0.70, p<0.0001), but not in CP (r=0.11, p=0.3739). The sensitivity and specificity of serum NfL for separating ALS from healthy controls was 91.3% and 91.0%.
CONCLUSIONS:We developed and validated a novel ECL based sandwich immunoassay for the NfL protein in serum (NfL(Umea47:3)); levels in ALS were more than 20-fold higher than in controls. Our data supports further longitudinal studies of serum NfL in neurodegenerative diseases as a potential biomarker of on-going disease progression, and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials

Nerve proteins in the nerve are released during damage, we have developed ways to measure this and indicates that nerve damage is occurring in MS and other diseases such as motor neuron disease (ALS). We can use this to monitor the effect of drugs on slowing nerve loss. We (Jens Kuhle) showed at ECTRIMS that gilenya could do this because as is clear in animal studies, relapsing (auto)immunity is damaging.

CoI. Studies preformed by Team G 

Labels: ,